Some homological properties of ideals with cohomological dimension one
نویسندگان
چکیده
منابع مشابه
Cohomological Dimension, Connectedness Properties and Initial Ideals
In this paper we will compare the connectivity dimension c(P/I) of an ideal I in a polynomial ring P with that of any initial ideal of I. Generalizing a theorem of Kalkbrener and Sturmfels [18], we prove that c(P/LT≺(I)) ≥ min{c(P/I), dim(P/I)−1} for each monomial order ≺. As a corollary we have that every initial complex of a Cohen-Macaulay ideal is strongly connected. Our approach is based on...
متن کاملOn the Homological Dimension of Certain Ideals
1. Introduction. We present two closely related results connecting homological dimension theory and the ideal theory of noetherian rings. The first, Proposition 4.1, asserts that the only ideals of finite homological dimension in a local ring whose associated prime ideals all have grade one are of the form aR:bR. The second, Proposition 4.3, asserts that if R is a noetherian integral domain, th...
متن کاملSome Ideals with Large Projective Dimension
For an ideal I in a polynomial ring over a field, a monomial support of I is the set of monomials that appear as terms in a set of minimal generators of I. Craig Huneke asked whether the size of a monomial support is a bound for the projective dimension of the ideal. We construct an example to show that, if the number of variables and the degrees of the generators are unspecified, the projectiv...
متن کاملSome Examples in Cohomological Dimension Theory
It is well-known that dimX ≤ n if and only if every map of a closed subspace of X into the n-dimensional sphere Sn can be extended over X. It is also well-known that for the cohomological dimension dimGX of X with respect to an abelian coefficient group G, dimGX ≤ n if and only if every map of a closed subspace of X into the Eilenberg-Mac Lane complex K(G,n) extends over X. These properties giv...
متن کاملSome homological properties of the category O
In the first part of this paper the projective dimension of the structural modules in the BGG category O is studied. This dimension is computed for simple, standard and costandard modules. For tilting and injective modules an explicit conjecture relating the result to Lusztig’s a-function is formulated (and proved for type A). The second part deals with the extension algebra of Verma modules. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2017
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm6939-11-2016